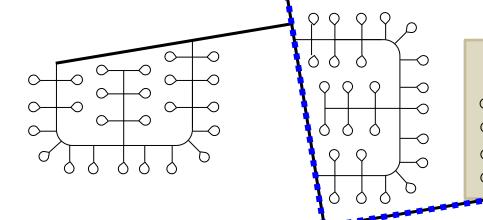
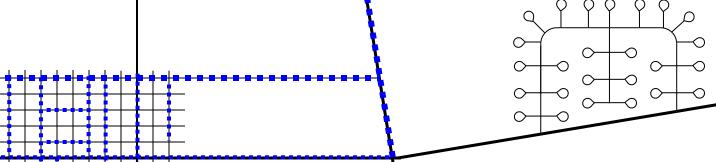
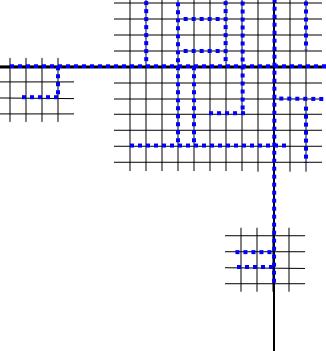
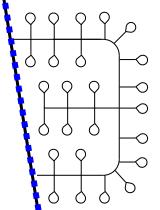

Replacing LOS with VMT in CA

Chris Ganson
California Governor's Office of Planning and Research

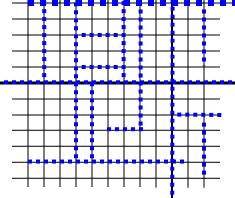




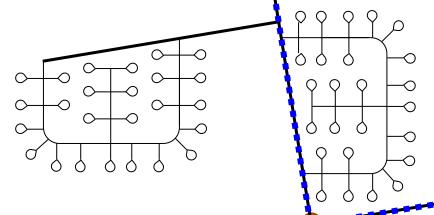


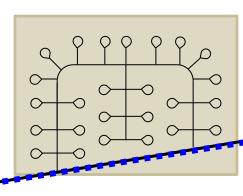

Analysis of greenfield development using LOS

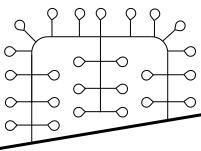
Typically three to four times the vehicle travel loaded onto the network relative to infill development

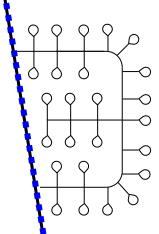


Analysis of greenfield development using LOS

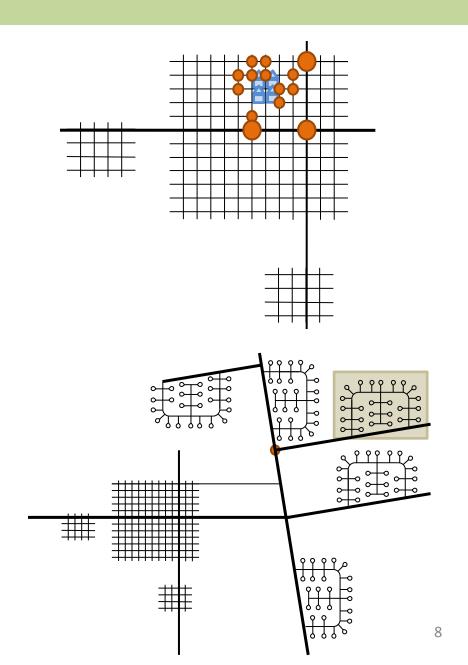

Typically three to four times the vehicle travel loaded onto the network relative to infill development

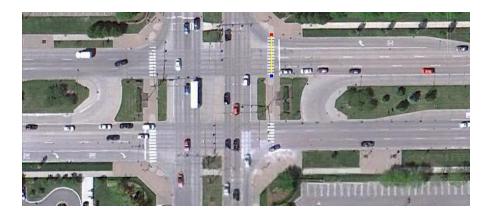



LOS impacts

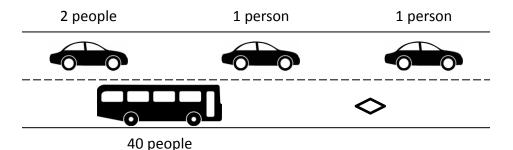


Traffic generated by the project is disperse enough by the time it reaches congested areas that it doesn't trigger LOS thresholds, even though it contributes broadly to regional congestion.





- 1. Punishes last-in, inhibits infill, pushes development outward
- 2. "Solves" local congestion, exacerbates regional congestion
- 3. Inhibits transit
- 4. Inhibits active transport
- Measures mobility, not access; shows failure when we succeed
- Measures mobility poorly; fails to optimize network even for autos
- 7. Forces more road construction than we can afford to maintain
- 8. Hard to calculate and inaccurate
- 9. Leads to costly, unhelpful solutions


- 1. Punishes last-in, inhibits infill, pushes development outward
- 2. "Solves" local congestion, exacerbates regional congestion
- 3. Inhibits transit
- 4. Inhibits active transport
- 5. Measures mobility, not access; shows failure when we succeed
- Measures mobility poorly; fails to optimize network even for autos
- 7. Forces more road construction than we can afford to maintain
- 8. Hard to calculate and inaccurate
- 9. Leads to costly, unhelpful solutions

David Paul Morris / SF

- 1. Punishes last-in, inhibits infill, pushes development outward
- 2. "Solves" local congestion, exacerbates regional congestion
- 3. Inhibits transit
- 4. Inhibits active transport
- Measures mobility, not access; shows failure when we succeed
- Measures mobility poorly; fails to optimize network even for autos
- 7. Forces more road construction than we can afford to maintain
- Hard to calculate and inaccurate
- 9. Leads to costly, unhelpful solutions

- 1. Punishes last-in, inhibits infill, pushes development outward
- 2. "Solves" local congestion, exacerbates regional congestion
- 3. Inhibits transit
- 4. Inhibits active transport
- 5. Measures mobility, not access; shows failure when we succeed
- 6. Measures mobility poorly; fails to optimize network even for autos
- 7. Forces more road construction than we can afford to maintain
- Hard to calculate and inaccurate
- 9. Leads to costly, unhelpful solutions

- 1. Punishes last-in, inhibits infill, pushes development outward
- 2. "Solves" local congestion, exacerbates regional congestion
- 3. Inhibits transit
- 4. Inhibits active transport
- 5. Measures mobility, not access; shows failure when we succeed
- 6. Measures mobility poorly; fails to optimize network even for autos
- 7. Forces more road construction than we can afford to maintain
- 8. Hard to calculate and inaccurate
- 9. Leads to costly, unhelpful solutions

Denver 1982

1.09 50.6 minutes 46.4 mins

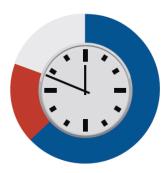
4.2 mins

Travel Time Index

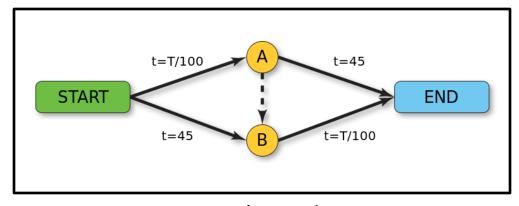
Average travel time

Travel time without traffic

Extra rush hour delay


Denver 2007

1.31


49.6 minutes

37.9 minutes

11.7 minutes



- 1. Punishes last-in, inhibits infill, pushes development outward
- 2. "Solves" local congestion, exacerbates regional congestion
- 3. Inhibits transit
- 4. Inhibits active transport
- 5. Measures mobility, not access; shows failure when we succeed
- 6. Measures mobility poorly; fails to optimize network even for autos
- 7. Forces more road construction than we can afford to maintain
- Hard to calculate and inaccurate
- 9. Leads to costly, unhelpful solutions

Braess's Paradox

- 1. Punishes last-in, inhibits infill, pushes development outward
- 2. "Solves" local congestion, exacerbates regional congestion
- 3. Inhibits transit
- 4. Inhibits active transport
- 5. Measures mobility, not access; shows failure when we succeed
- Measures mobility poorly; fails to optimize network even for autos
- 7. Forces more road construction than we can afford to maintain
- 8. Hard to calculate and inaccurate
- 9. Leads to costly, unhelpful solutions

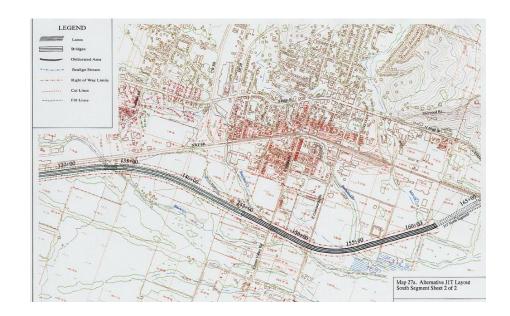

- 1. Punishes last-in, inhibits infill, pushes development outward
- 2. "Solves" local congestion, exacerbates regional congestion
- Inhibits transit
- 4. Inhibits active transport
- 5. Measures mobility, not access; shows failure when we succeed
- 6. Measures mobility poorly; fails to optimize network even for autos
- 7. Forces more road construction than we can afford to maintain
- 8. Hard to calculate and inaccurate
- 9. Leads to costly, unhelpful solutions

Table V.M-13 Intersection Critical Movement Analysis (CMA) and Level of Service (LOS) Summary Existing (2001) and Future (2005) Conditions

$\neg \neg$		Peak	Existing		Without Project		With Project			With Project + Mitigation		
No.	Intersection	Hour	CMA	LOS	CMA	LOS	CMA	LOS	Impact	CMA	LOS	Impact
1.	Sunset Boulevard & Beverly Glen Boulevard (E.)	AM PM	0.894 1.023	D F	1.038 1.225	F F	1.037 1.216	F F	-0.001 -0.009	1.036 1.215	F F	-0.002 -0.010
2.	Sunset Boulevard & Beverly Glen Boulevard (W.)	AM PM	1.189 1.062	F	1,385 1,264	F F	1.388 1.251	F	0.003 -0.013	1.385 1.249	F	0.000 -0.015
3.	Wilshire Boulevard & Beverly Gien Boulevard	AM PM	0.868 0.884	D	1.030 1.140	F F	1.030 1.133	F F	0.000 -0.007	1.029 1.133	F F	-0.001 -0.007
4.	Santa Monica Boulevard (N.) & Overland Avenue	AM PM	0.861 0.814	D D	1.076 1.082	F F	1.080 1.054	F F	0.004 -0.028	1.078 1.054	F F	0.002 -0.028
5.	Santa Monica Boulevard (S.) & Overland Avenue	AM PM	0.478 0.428	A	0.358 0.465	A A	0.358 0.465	, A	0.000	0.358 0.465	A	0.000
6.	Santa Monica Boulevard (N.) & Beverly Glen Boulevard	AM PM	0.849 0.823	D	1.099 1.139	F F	1.107 1.130	F F	0.008 -0.009	1.104 1.128	F F	0.005 -0.011
7.	Santa Monica Boulevard (S.) & Beverly Glen Boulevard	,AM PM	0.849 0.884	D D	0.464 0.575	A A	0.464 0.575	A	0.000 000.0	0.464 0.575	A	0.000
8.	Santa Monica Boulevard (S.) & Century Park West	AM PM	0.325 0.397	A	1.006 0.984	F E	1.007 0.969	F E	0.001 -0.015	1.005 0.966	F E	-0.001 -0.018
9.	Santa Monica Boulevard (N.) & Club View Drive	AM PM	0.613 0.707	B C	0.213 0.408	A A	0.213 0.408	A	0.000	0.213 0.408	Α .	0.000
10.	Santa Monica Boulevard (N.) & Avenue Of The Stars	AM PM	0.825 0.755	C	1.191 0.967	F E	1.205 0.956	F E	0.014 * -0.011	1.199 0.955	F E	0.008 -0.012
11.	Santa Monica Boulevard (S.) & Avenue Of The Stars	AM PM	0.506 0.544	A A	NA NA		NA NA			NA NA		
12.	Santa Monica Boulevard (N.) & Century Park East	AM PM	0.759 0.666	C B	0.950 0.846	E D	0.955 0.805	E D	0.005 -0.041	0.953 0.804	E D	0.003 -0.042
13.	Santa Monica Boulevard (S.) & Century Park East	AM PM	0.771 0.648	C B	NA NA		NA NA			NA NA		
14.	Santa Monica Boulevard (N.) & Wilshire Boulevard	AM PM	1.096 1.046	F F	1.261 1.294	F F	1.263 1.288	F	0.002 -0.006	1.263 1.287	F	0.002

Page 242

- 1. Punishes last-in, inhibits infill, pushes development outward
- 2. "Solves" local congestion, exacerbates regional congestion
- Inhibits transit
- 4. Inhibits active transport
- 5. Measures mobility, not access; shows failure when we succeed
- 6. Measures mobility poorly; fails to optimize network even for autos
- 7. Forces more road construction than we can afford to maintain
- 8. Hard to calculate and inaccurate
- 9. Leads to costly, unhelpful solutions

Benefits of VMT

- 1. Removes barriers to infill
- 2. Easier to model
- 3. Already calculated (for GHGs)
- 4. More accurate
- 5. Sees the big picture
- 6. Mitigation doesn't undo itself by inducing more car travel
- 7. Mitigation reduces long run maintenance burden
- 8. Mitigation forwards other environmental and human health factors

Impacts of High VMT Development

Environment

- Emissions
 - GHG
 - Regional pollutants
- Energy use
 - Transportation energy
 - Building energy
- Water
 - Water use
 - Runoff flooding
 - Runoff pollution
- Consumption of open space
 - Sensitive habitat
 - Agricultural land

Health

- Collisions
- Physical activity
- Emissions
 - GHGs
 - Regional pollutants
- Mental health

Cost

- Increased costs to state and local government
 - Roads
 - Other infrastructure
 - Schools
 - Services
- Increased private transportation cost
- Increased building costs (due to parking costs)
- Reduced productivity per acre due to parking
- Housing supply/demand mismatch → future blight

January 2015 18

Where?

Urban

- Streamline infill
- Streamline transit and active transportation projects
- Lots of mitigation options, greatest percent VMT reduction

Suburban

- Problems with LOS, benefits of VMT apply here too
- Many mitigation options; greatest absolute VMT reduction

Rural

- Again, problems with LOS, benefits of VMT apply here too
- Many mitigation options at the plan level, some at the project level
- VMT mitigation helps maintain small town character, equity

All: Benefits to environment, health, public cost, private expenditures

Transportation Impact Fees

Bad

Ad-hoc LOS-triggered Transportation Impact Fees (very bad)

LOS used to size roadway capacity; unit or square footage-based Transportation Impact Fee (not so good)

LOS used to size roadway capacity; VMT-based Transportation Impact Fees (better)

Good

Use accessibility/connectivity metric to design network; Use VMT based Transportation Impact Fee (best)

January 2015 20

Thanks!

Chris Ganson chris.ganson@opr.ca.gov